Skip to contents

count() lets you quickly count the unique values of one or more variables: df %>% count(a, b) is roughly equivalent to df %>% group_by(a, b) %>% summarise(n = n()). count() is paired with tally(), a lower-level helper that is equivalent to df %>% summarise(n = n()). Supply wt to perform weighted counts, switching the summary from from n = n() to n = sum(wt). add_count() and add_tally() are equivalent to count() and tally() but use mutate() instead of summarise() so that they add a new column with group-wise counts.

Usage

count(x, ..., wt = NULL, sort = FALSE, name = NULL)

tally(x, wt = NULL, sort = FALSE, name = NULL)

add_count(x, ..., wt = NULL, sort = FALSE, name = NULL)

add_tally(x, wt = NULL, sort = FALSE, name = NULL)

Arguments

x

A data.frame.

...

Variables to group by.

wt

If omitted, will count the number of rows. If specified, will perform a "weighted" count by summing the (non-missing) values of variable wt. If omitted, and column n exists, it will automatically be used as a weighting variable, although you will have to specify name to provide a new name for the output.

sort

logical(1). If TRUE, will show the largest groups at the top.

name

character(1). The name of the new column in the output. If omitted, it will default to n. If there's already a column called n, it will error, and require you to specify the name.

Value

A data.frame. count() and add_count() have the same groups as the input.

Examples

# count() is a convenient way to get a sense of the distribution of
# values in a dataset
mtcars %>% count(cyl)
#>   cyl  n
#> 1   4 11
#> 2   6  7
#> 3   8 14
mtcars %>% count(cyl, sort = TRUE)
#>   cyl  n
#> 1   8 14
#> 2   4 11
#> 3   6  7
mtcars %>% count(cyl, am, sort = TRUE)
#> `summarise()` has grouped output by 'cyl'. You can override using the `.groups` argument.
#>   cyl am  n
#> 1   8  0 12
#> 2   4  1  8
#> 3   6  0  4
#> 4   4  0  3
#> 5   6  1  3
#> 6   8  1  2
# Note that if the data are already grouped, count() adds an additional grouping variable
# which is removed afterwards
mtcars %>% group_by(gear) %>% count(cyl)
#> `summarise()` has grouped output by 'gear'. You can override using the `.groups` argument.
#>   gear cyl  n
#> 1    3   4  1
#> 2    3   6  2
#> 3    3   8 12
#> 4    4   4  8
#> 5    4   6  4
#> 6    5   4  2
#> 7    5   6  1
#> 8    5   8  2

# tally() is a lower-level function that assumes you've done the grouping
mtcars %>% tally()
#>    n
#> 1 32
mtcars %>% group_by(cyl) %>% tally()
#>   cyl  n
#> 1   4 11
#> 2   6  7
#> 3   8 14

# both count() and tally() have add_ variants that work like mutate() instead of summarise
mtcars %>% add_count(cyl, wt = am)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb n
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4 3
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4 3
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1 8
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1 3
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1 3
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4 2
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2 8
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2 8
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4 3
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4 3
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3 2
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3 2
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3 2
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4 2
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4 2
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4 2
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1 8
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2 8
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1 8
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1 8
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2 2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2 2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4 2
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2 2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1 8
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2 8
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2 8
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4 2
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6 3
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8 2
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2 8
mtcars %>% add_tally(wt = am)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb  n
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4 13
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4 13
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1 13
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1 13
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 13
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1 13
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4 13
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2 13
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2 13
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4 13
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4 13
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3 13
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3 13
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3 13
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4 13
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4 13
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4 13
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1 13
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2 13
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1 13
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1 13
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2 13
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2 13
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4 13
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2 13
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1 13
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2 13
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2 13
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4 13
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6 13
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8 13
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2 13