This selection helper selects the variables for which a function returns TRUE.

where(fn)

Arguments

fn

A function that returns TRUE or FALSE.

Value

A vector of integer column positions which are the result of the fn evaluation.

See also

Examples

iris %>% select(where(is.numeric))
#> Sepal.Length Sepal.Width Petal.Length Petal.Width #> 1 5.1 3.5 1.4 0.2 #> 2 4.9 3.0 1.4 0.2 #> 3 4.7 3.2 1.3 0.2 #> 4 4.6 3.1 1.5 0.2 #> 5 5.0 3.6 1.4 0.2 #> 6 5.4 3.9 1.7 0.4 #> 7 4.6 3.4 1.4 0.3 #> 8 5.0 3.4 1.5 0.2 #> 9 4.4 2.9 1.4 0.2 #> 10 4.9 3.1 1.5 0.1 #> 11 5.4 3.7 1.5 0.2 #> 12 4.8 3.4 1.6 0.2 #> 13 4.8 3.0 1.4 0.1 #> 14 4.3 3.0 1.1 0.1 #> 15 5.8 4.0 1.2 0.2 #> 16 5.7 4.4 1.5 0.4 #> 17 5.4 3.9 1.3 0.4 #> 18 5.1 3.5 1.4 0.3 #> 19 5.7 3.8 1.7 0.3 #> 20 5.1 3.8 1.5 0.3 #> 21 5.4 3.4 1.7 0.2 #> 22 5.1 3.7 1.5 0.4 #> 23 4.6 3.6 1.0 0.2 #> 24 5.1 3.3 1.7 0.5 #> 25 4.8 3.4 1.9 0.2 #> 26 5.0 3.0 1.6 0.2 #> 27 5.0 3.4 1.6 0.4 #> 28 5.2 3.5 1.5 0.2 #> 29 5.2 3.4 1.4 0.2 #> 30 4.7 3.2 1.6 0.2 #> 31 4.8 3.1 1.6 0.2 #> 32 5.4 3.4 1.5 0.4 #> 33 5.2 4.1 1.5 0.1 #> 34 5.5 4.2 1.4 0.2 #> 35 4.9 3.1 1.5 0.2 #> 36 5.0 3.2 1.2 0.2 #> 37 5.5 3.5 1.3 0.2 #> 38 4.9 3.6 1.4 0.1 #> 39 4.4 3.0 1.3 0.2 #> 40 5.1 3.4 1.5 0.2 #> 41 5.0 3.5 1.3 0.3 #> 42 4.5 2.3 1.3 0.3 #> 43 4.4 3.2 1.3 0.2 #> 44 5.0 3.5 1.6 0.6 #> 45 5.1 3.8 1.9 0.4 #> 46 4.8 3.0 1.4 0.3 #> 47 5.1 3.8 1.6 0.2 #> 48 4.6 3.2 1.4 0.2 #> 49 5.3 3.7 1.5 0.2 #> 50 5.0 3.3 1.4 0.2 #> 51 7.0 3.2 4.7 1.4 #> 52 6.4 3.2 4.5 1.5 #> 53 6.9 3.1 4.9 1.5 #> 54 5.5 2.3 4.0 1.3 #> 55 6.5 2.8 4.6 1.5 #> 56 5.7 2.8 4.5 1.3 #> 57 6.3 3.3 4.7 1.6 #> 58 4.9 2.4 3.3 1.0 #> 59 6.6 2.9 4.6 1.3 #> 60 5.2 2.7 3.9 1.4 #> 61 5.0 2.0 3.5 1.0 #> 62 5.9 3.0 4.2 1.5 #> 63 6.0 2.2 4.0 1.0 #> 64 6.1 2.9 4.7 1.4 #> 65 5.6 2.9 3.6 1.3 #> 66 6.7 3.1 4.4 1.4 #> 67 5.6 3.0 4.5 1.5 #> 68 5.8 2.7 4.1 1.0 #> 69 6.2 2.2 4.5 1.5 #> 70 5.6 2.5 3.9 1.1 #> 71 5.9 3.2 4.8 1.8 #> 72 6.1 2.8 4.0 1.3 #> 73 6.3 2.5 4.9 1.5 #> 74 6.1 2.8 4.7 1.2 #> 75 6.4 2.9 4.3 1.3 #> 76 6.6 3.0 4.4 1.4 #> 77 6.8 2.8 4.8 1.4 #> 78 6.7 3.0 5.0 1.7 #> 79 6.0 2.9 4.5 1.5 #> 80 5.7 2.6 3.5 1.0 #> 81 5.5 2.4 3.8 1.1 #> 82 5.5 2.4 3.7 1.0 #> 83 5.8 2.7 3.9 1.2 #> 84 6.0 2.7 5.1 1.6 #> 85 5.4 3.0 4.5 1.5 #> 86 6.0 3.4 4.5 1.6 #> 87 6.7 3.1 4.7 1.5 #> 88 6.3 2.3 4.4 1.3 #> 89 5.6 3.0 4.1 1.3 #> 90 5.5 2.5 4.0 1.3 #> 91 5.5 2.6 4.4 1.2 #> 92 6.1 3.0 4.6 1.4 #> 93 5.8 2.6 4.0 1.2 #> 94 5.0 2.3 3.3 1.0 #> 95 5.6 2.7 4.2 1.3 #> 96 5.7 3.0 4.2 1.2 #> 97 5.7 2.9 4.2 1.3 #> 98 6.2 2.9 4.3 1.3 #> 99 5.1 2.5 3.0 1.1 #> 100 5.7 2.8 4.1 1.3 #> 101 6.3 3.3 6.0 2.5 #> 102 5.8 2.7 5.1 1.9 #> 103 7.1 3.0 5.9 2.1 #> 104 6.3 2.9 5.6 1.8 #> 105 6.5 3.0 5.8 2.2 #> 106 7.6 3.0 6.6 2.1 #> 107 4.9 2.5 4.5 1.7 #> 108 7.3 2.9 6.3 1.8 #> 109 6.7 2.5 5.8 1.8 #> 110 7.2 3.6 6.1 2.5 #> 111 6.5 3.2 5.1 2.0 #> 112 6.4 2.7 5.3 1.9 #> 113 6.8 3.0 5.5 2.1 #> 114 5.7 2.5 5.0 2.0 #> 115 5.8 2.8 5.1 2.4 #> 116 6.4 3.2 5.3 2.3 #> 117 6.5 3.0 5.5 1.8 #> 118 7.7 3.8 6.7 2.2 #> 119 7.7 2.6 6.9 2.3 #> 120 6.0 2.2 5.0 1.5 #> 121 6.9 3.2 5.7 2.3 #> 122 5.6 2.8 4.9 2.0 #> 123 7.7 2.8 6.7 2.0 #> 124 6.3 2.7 4.9 1.8 #> 125 6.7 3.3 5.7 2.1 #> 126 7.2 3.2 6.0 1.8 #> 127 6.2 2.8 4.8 1.8 #> 128 6.1 3.0 4.9 1.8 #> 129 6.4 2.8 5.6 2.1 #> 130 7.2 3.0 5.8 1.6 #> 131 7.4 2.8 6.1 1.9 #> 132 7.9 3.8 6.4 2.0 #> 133 6.4 2.8 5.6 2.2 #> 134 6.3 2.8 5.1 1.5 #> 135 6.1 2.6 5.6 1.4 #> 136 7.7 3.0 6.1 2.3 #> 137 6.3 3.4 5.6 2.4 #> 138 6.4 3.1 5.5 1.8 #> 139 6.0 3.0 4.8 1.8 #> 140 6.9 3.1 5.4 2.1 #> 141 6.7 3.1 5.6 2.4 #> 142 6.9 3.1 5.1 2.3 #> 143 5.8 2.7 5.1 1.9 #> 144 6.8 3.2 5.9 2.3 #> 145 6.7 3.3 5.7 2.5 #> 146 6.7 3.0 5.2 2.3 #> 147 6.3 2.5 5.0 1.9 #> 148 6.5 3.0 5.2 2.0 #> 149 6.2 3.4 5.4 2.3 #> 150 5.9 3.0 5.1 1.8
iris %>% select(where(function(x) is.numeric(x)))
#> Sepal.Length Sepal.Width Petal.Length Petal.Width #> 1 5.1 3.5 1.4 0.2 #> 2 4.9 3.0 1.4 0.2 #> 3 4.7 3.2 1.3 0.2 #> 4 4.6 3.1 1.5 0.2 #> 5 5.0 3.6 1.4 0.2 #> 6 5.4 3.9 1.7 0.4 #> 7 4.6 3.4 1.4 0.3 #> 8 5.0 3.4 1.5 0.2 #> 9 4.4 2.9 1.4 0.2 #> 10 4.9 3.1 1.5 0.1 #> 11 5.4 3.7 1.5 0.2 #> 12 4.8 3.4 1.6 0.2 #> 13 4.8 3.0 1.4 0.1 #> 14 4.3 3.0 1.1 0.1 #> 15 5.8 4.0 1.2 0.2 #> 16 5.7 4.4 1.5 0.4 #> 17 5.4 3.9 1.3 0.4 #> 18 5.1 3.5 1.4 0.3 #> 19 5.7 3.8 1.7 0.3 #> 20 5.1 3.8 1.5 0.3 #> 21 5.4 3.4 1.7 0.2 #> 22 5.1 3.7 1.5 0.4 #> 23 4.6 3.6 1.0 0.2 #> 24 5.1 3.3 1.7 0.5 #> 25 4.8 3.4 1.9 0.2 #> 26 5.0 3.0 1.6 0.2 #> 27 5.0 3.4 1.6 0.4 #> 28 5.2 3.5 1.5 0.2 #> 29 5.2 3.4 1.4 0.2 #> 30 4.7 3.2 1.6 0.2 #> 31 4.8 3.1 1.6 0.2 #> 32 5.4 3.4 1.5 0.4 #> 33 5.2 4.1 1.5 0.1 #> 34 5.5 4.2 1.4 0.2 #> 35 4.9 3.1 1.5 0.2 #> 36 5.0 3.2 1.2 0.2 #> 37 5.5 3.5 1.3 0.2 #> 38 4.9 3.6 1.4 0.1 #> 39 4.4 3.0 1.3 0.2 #> 40 5.1 3.4 1.5 0.2 #> 41 5.0 3.5 1.3 0.3 #> 42 4.5 2.3 1.3 0.3 #> 43 4.4 3.2 1.3 0.2 #> 44 5.0 3.5 1.6 0.6 #> 45 5.1 3.8 1.9 0.4 #> 46 4.8 3.0 1.4 0.3 #> 47 5.1 3.8 1.6 0.2 #> 48 4.6 3.2 1.4 0.2 #> 49 5.3 3.7 1.5 0.2 #> 50 5.0 3.3 1.4 0.2 #> 51 7.0 3.2 4.7 1.4 #> 52 6.4 3.2 4.5 1.5 #> 53 6.9 3.1 4.9 1.5 #> 54 5.5 2.3 4.0 1.3 #> 55 6.5 2.8 4.6 1.5 #> 56 5.7 2.8 4.5 1.3 #> 57 6.3 3.3 4.7 1.6 #> 58 4.9 2.4 3.3 1.0 #> 59 6.6 2.9 4.6 1.3 #> 60 5.2 2.7 3.9 1.4 #> 61 5.0 2.0 3.5 1.0 #> 62 5.9 3.0 4.2 1.5 #> 63 6.0 2.2 4.0 1.0 #> 64 6.1 2.9 4.7 1.4 #> 65 5.6 2.9 3.6 1.3 #> 66 6.7 3.1 4.4 1.4 #> 67 5.6 3.0 4.5 1.5 #> 68 5.8 2.7 4.1 1.0 #> 69 6.2 2.2 4.5 1.5 #> 70 5.6 2.5 3.9 1.1 #> 71 5.9 3.2 4.8 1.8 #> 72 6.1 2.8 4.0 1.3 #> 73 6.3 2.5 4.9 1.5 #> 74 6.1 2.8 4.7 1.2 #> 75 6.4 2.9 4.3 1.3 #> 76 6.6 3.0 4.4 1.4 #> 77 6.8 2.8 4.8 1.4 #> 78 6.7 3.0 5.0 1.7 #> 79 6.0 2.9 4.5 1.5 #> 80 5.7 2.6 3.5 1.0 #> 81 5.5 2.4 3.8 1.1 #> 82 5.5 2.4 3.7 1.0 #> 83 5.8 2.7 3.9 1.2 #> 84 6.0 2.7 5.1 1.6 #> 85 5.4 3.0 4.5 1.5 #> 86 6.0 3.4 4.5 1.6 #> 87 6.7 3.1 4.7 1.5 #> 88 6.3 2.3 4.4 1.3 #> 89 5.6 3.0 4.1 1.3 #> 90 5.5 2.5 4.0 1.3 #> 91 5.5 2.6 4.4 1.2 #> 92 6.1 3.0 4.6 1.4 #> 93 5.8 2.6 4.0 1.2 #> 94 5.0 2.3 3.3 1.0 #> 95 5.6 2.7 4.2 1.3 #> 96 5.7 3.0 4.2 1.2 #> 97 5.7 2.9 4.2 1.3 #> 98 6.2 2.9 4.3 1.3 #> 99 5.1 2.5 3.0 1.1 #> 100 5.7 2.8 4.1 1.3 #> 101 6.3 3.3 6.0 2.5 #> 102 5.8 2.7 5.1 1.9 #> 103 7.1 3.0 5.9 2.1 #> 104 6.3 2.9 5.6 1.8 #> 105 6.5 3.0 5.8 2.2 #> 106 7.6 3.0 6.6 2.1 #> 107 4.9 2.5 4.5 1.7 #> 108 7.3 2.9 6.3 1.8 #> 109 6.7 2.5 5.8 1.8 #> 110 7.2 3.6 6.1 2.5 #> 111 6.5 3.2 5.1 2.0 #> 112 6.4 2.7 5.3 1.9 #> 113 6.8 3.0 5.5 2.1 #> 114 5.7 2.5 5.0 2.0 #> 115 5.8 2.8 5.1 2.4 #> 116 6.4 3.2 5.3 2.3 #> 117 6.5 3.0 5.5 1.8 #> 118 7.7 3.8 6.7 2.2 #> 119 7.7 2.6 6.9 2.3 #> 120 6.0 2.2 5.0 1.5 #> 121 6.9 3.2 5.7 2.3 #> 122 5.6 2.8 4.9 2.0 #> 123 7.7 2.8 6.7 2.0 #> 124 6.3 2.7 4.9 1.8 #> 125 6.7 3.3 5.7 2.1 #> 126 7.2 3.2 6.0 1.8 #> 127 6.2 2.8 4.8 1.8 #> 128 6.1 3.0 4.9 1.8 #> 129 6.4 2.8 5.6 2.1 #> 130 7.2 3.0 5.8 1.6 #> 131 7.4 2.8 6.1 1.9 #> 132 7.9 3.8 6.4 2.0 #> 133 6.4 2.8 5.6 2.2 #> 134 6.3 2.8 5.1 1.5 #> 135 6.1 2.6 5.6 1.4 #> 136 7.7 3.0 6.1 2.3 #> 137 6.3 3.4 5.6 2.4 #> 138 6.4 3.1 5.5 1.8 #> 139 6.0 3.0 4.8 1.8 #> 140 6.9 3.1 5.4 2.1 #> 141 6.7 3.1 5.6 2.4 #> 142 6.9 3.1 5.1 2.3 #> 143 5.8 2.7 5.1 1.9 #> 144 6.8 3.2 5.9 2.3 #> 145 6.7 3.3 5.7 2.5 #> 146 6.7 3.0 5.2 2.3 #> 147 6.3 2.5 5.0 1.9 #> 148 6.5 3.0 5.2 2.0 #> 149 6.2 3.4 5.4 2.3 #> 150 5.9 3.0 5.1 1.8
iris %>% select(where(function(x) is.numeric(x) && mean(x) > 3.5))
#> Sepal.Length Petal.Length #> 1 5.1 1.4 #> 2 4.9 1.4 #> 3 4.7 1.3 #> 4 4.6 1.5 #> 5 5.0 1.4 #> 6 5.4 1.7 #> 7 4.6 1.4 #> 8 5.0 1.5 #> 9 4.4 1.4 #> 10 4.9 1.5 #> 11 5.4 1.5 #> 12 4.8 1.6 #> 13 4.8 1.4 #> 14 4.3 1.1 #> 15 5.8 1.2 #> 16 5.7 1.5 #> 17 5.4 1.3 #> 18 5.1 1.4 #> 19 5.7 1.7 #> 20 5.1 1.5 #> 21 5.4 1.7 #> 22 5.1 1.5 #> 23 4.6 1.0 #> 24 5.1 1.7 #> 25 4.8 1.9 #> 26 5.0 1.6 #> 27 5.0 1.6 #> 28 5.2 1.5 #> 29 5.2 1.4 #> 30 4.7 1.6 #> 31 4.8 1.6 #> 32 5.4 1.5 #> 33 5.2 1.5 #> 34 5.5 1.4 #> 35 4.9 1.5 #> 36 5.0 1.2 #> 37 5.5 1.3 #> 38 4.9 1.4 #> 39 4.4 1.3 #> 40 5.1 1.5 #> 41 5.0 1.3 #> 42 4.5 1.3 #> 43 4.4 1.3 #> 44 5.0 1.6 #> 45 5.1 1.9 #> 46 4.8 1.4 #> 47 5.1 1.6 #> 48 4.6 1.4 #> 49 5.3 1.5 #> 50 5.0 1.4 #> 51 7.0 4.7 #> 52 6.4 4.5 #> 53 6.9 4.9 #> 54 5.5 4.0 #> 55 6.5 4.6 #> 56 5.7 4.5 #> 57 6.3 4.7 #> 58 4.9 3.3 #> 59 6.6 4.6 #> 60 5.2 3.9 #> 61 5.0 3.5 #> 62 5.9 4.2 #> 63 6.0 4.0 #> 64 6.1 4.7 #> 65 5.6 3.6 #> 66 6.7 4.4 #> 67 5.6 4.5 #> 68 5.8 4.1 #> 69 6.2 4.5 #> 70 5.6 3.9 #> 71 5.9 4.8 #> 72 6.1 4.0 #> 73 6.3 4.9 #> 74 6.1 4.7 #> 75 6.4 4.3 #> 76 6.6 4.4 #> 77 6.8 4.8 #> 78 6.7 5.0 #> 79 6.0 4.5 #> 80 5.7 3.5 #> 81 5.5 3.8 #> 82 5.5 3.7 #> 83 5.8 3.9 #> 84 6.0 5.1 #> 85 5.4 4.5 #> 86 6.0 4.5 #> 87 6.7 4.7 #> 88 6.3 4.4 #> 89 5.6 4.1 #> 90 5.5 4.0 #> 91 5.5 4.4 #> 92 6.1 4.6 #> 93 5.8 4.0 #> 94 5.0 3.3 #> 95 5.6 4.2 #> 96 5.7 4.2 #> 97 5.7 4.2 #> 98 6.2 4.3 #> 99 5.1 3.0 #> 100 5.7 4.1 #> 101 6.3 6.0 #> 102 5.8 5.1 #> 103 7.1 5.9 #> 104 6.3 5.6 #> 105 6.5 5.8 #> 106 7.6 6.6 #> 107 4.9 4.5 #> 108 7.3 6.3 #> 109 6.7 5.8 #> 110 7.2 6.1 #> 111 6.5 5.1 #> 112 6.4 5.3 #> 113 6.8 5.5 #> 114 5.7 5.0 #> 115 5.8 5.1 #> 116 6.4 5.3 #> 117 6.5 5.5 #> 118 7.7 6.7 #> 119 7.7 6.9 #> 120 6.0 5.0 #> 121 6.9 5.7 #> 122 5.6 4.9 #> 123 7.7 6.7 #> 124 6.3 4.9 #> 125 6.7 5.7 #> 126 7.2 6.0 #> 127 6.2 4.8 #> 128 6.1 4.9 #> 129 6.4 5.6 #> 130 7.2 5.8 #> 131 7.4 6.1 #> 132 7.9 6.4 #> 133 6.4 5.6 #> 134 6.3 5.1 #> 135 6.1 5.6 #> 136 7.7 6.1 #> 137 6.3 5.6 #> 138 6.4 5.5 #> 139 6.0 4.8 #> 140 6.9 5.4 #> 141 6.7 5.6 #> 142 6.9 5.1 #> 143 5.8 5.1 #> 144 6.8 5.9 #> 145 6.7 5.7 #> 146 6.7 5.2 #> 147 6.3 5.0 #> 148 6.5 5.2 #> 149 6.2 5.4 #> 150 5.9 5.1